翻訳と辞書
Words near each other
・ Kälberbach (Seemenbach)
・ Kälberberg
・ Kälberbuckel
・ Kälbersteine
・ Kälen
・ Kälin
・ Källa Bie
・ Källa Old Church
・ Källargränd
・ Källbrinks IP
・ Källby
・ Källby Runestones
・ Källström
・ Källtorpssjön
・ Källunge church
Källén–Lehmann spectral representation
・ Källö-Knippla
・ Kälvesta
・ Kälviä
・ Kämara
・ Kämmerling
・ Kämpersvik
・ Kämpfelbach
・ Kämpfelbach (river)
・ Kämpfer
・ Kändisdjungeln
・ Kändishoppet
・ Kändler
・ Kändliku
・ Känerkinden


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Källén–Lehmann spectral representation : ウィキペディア英語版
Källén–Lehmann spectral representation

The Källén–Lehmann spectral representation gives a general expression for the two-point function of an interacting quantum field theory as a sum of free propagators. It was discovered by Gunnar Källén and Harry Lehmann independently. This can be written as
:\Delta(p)=\int_0^\infty d\mu^2\rho(\mu^2)\frac
being \rho(\mu^2) the spectral density function that should be positive definite. In a gauge theory, this latter condition cannot be granted but nevertheless a spectral representation can be provided. This belongs to non-perturbative techniques of quantum field theory.
==Mathematical derivation==

In order to derive a spectral representation for the propagator of a field \Phi(x), one consider a complete set of states \ so that, for the two-point function one can write
:\langle 0|\Phi(x)\Phi^\dagger(y)|0\rangle=\sum_n\langle 0|\Phi(x)|n\rangle\langle n|\Phi^\dagger(y)|0\rangle.
We can now use Poincaré invariance of the vacuum to write down
:\langle 0|\Phi(x)\Phi^\dagger(y)|0\rangle=\sum_n e^|\langle 0|\Phi(0)|n\rangle|^2.
Let us introduce the spectral density function
:\rho(p^2)\theta(p_0)(2\pi)^=\sum_n\delta^4(p-p_n)|\langle 0|\Phi(0)|n\rangle|^2.
We have used the fact that our two-point function, being a function of p_\mu, can only depend on p^2. Besides, all the intermediate states have p^2\ge 0 and p_0>0. It is immediate to realize that the spectral density function is real and positive. So, one can write
:\langle 0|\Phi(x)\Phi^\dagger(y)|0\rangle = \int\frac\int_0^\infty d\mu^2e^\rho(\mu^2)\theta(p_0)\delta(p^2-\mu^2)
and we freely interchange the integration, this should be done carefully from a mathematical standpoint but here we ignore this, and write this expression as
:\langle 0|\Phi(x)\Phi^\dagger(y)|0\rangle = \int_0^\infty d\mu^2\rho(\mu^2)\Delta'(x-y;\mu^2)
being
:\Delta'(x-y;\mu^2)=\int\frace^\theta(p_0)\delta(p^2-\mu^2).
From CPT theorem we also know that holds an identical expression for \langle 0|\Phi^\dagger(x)\Phi(y)|0\rangle and so we arrive at the expression for the chronologically ordered product of fields
:\langle 0|T\Phi(x)\Phi^\dagger(y)|0\rangle = \int_0^\infty d\mu^2\rho(\mu^2)\Delta(x-y;\mu^2)
being now
:\Delta(p;\mu^2)=\frac
a free particle propagator. Now, as we have the exact propagator given by the chronologically ordered two-point function, we have obtained the spectral decomposition.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Källén–Lehmann spectral representation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.